The List Polynomial

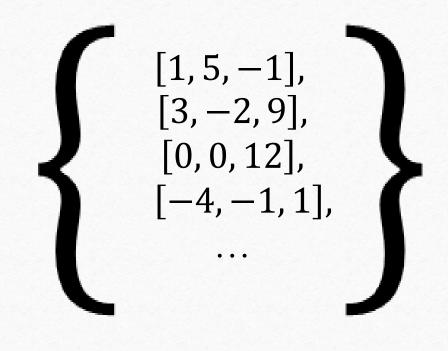
Samuel Desrochers

Work done under the supervision of Simon Henry and Phil Scott

Thinking about lists...

L(X): finite lists on a set X

Consider: the set of lists on X of length 3. This is just $X \times X \times X$. The set of lists of length 3 on $X = \mathbb{Z}$



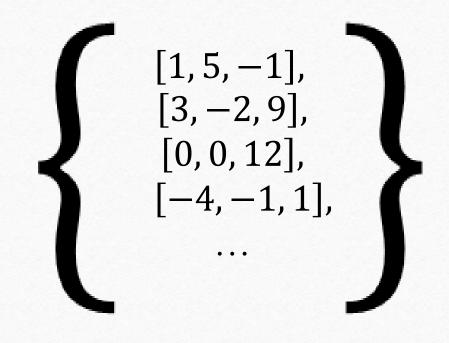
Thinking about lists...

L(X): finite lists on a set X

Consider: the set of lists on X of length 3. This is just $X \times X \times X$.

Therefore:
$$L(X) = \sum_{n \in \mathbb{N}} X^n$$

The set of lists of length 3 on $X = \mathbb{Z}$



 $X \mapsto L(X)$ is a functor Set \rightarrow Set

Usual polynomials:

$$1 + x^{2} + x^{7}$$

$$=$$

$$\sum_{i \in I} x^{a_{i}}$$
for $I = \{1, 2, 3\},$

$$a_{1} = 0, a_{2} = 2, a_{3} = 7$$

It has a particular shape: $L(X) = \sum_{n \in \mathbb{N}} X^n$

It is a *polynomial functor*.

Let's generalize!

L(X): lists on a set X

List objects in general

In a category with finite products:

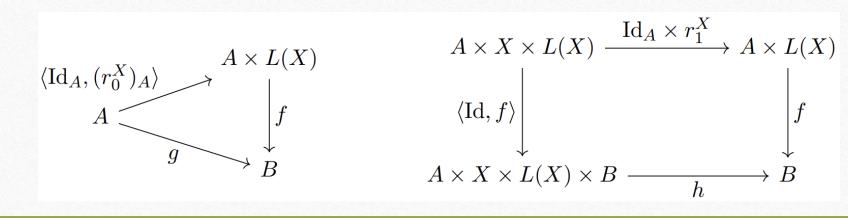
- List object L(X)
- Empty list $1 \rightarrow L(X)$

Inductively define $f : A \times L(X) \rightarrow B$

•
$$f(a, \emptyset) = g(a)$$

•
$$f(a, x :: \ell) = h(a, x, \ell, f(a))$$

• Append operation $X \times L(X) \rightarrow L(X)$



List objects in general

If a category C has finite products, and for each object X there is a list object L(X), then we can form a functor:

$$L: \mathcal{C} \to \mathcal{C}: X \mapsto L(X)$$

Is this a polynomial functor?

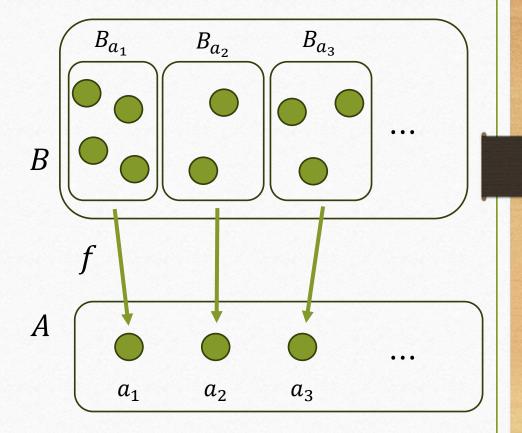
What is a polynomial functor?

Internal language of slice categories

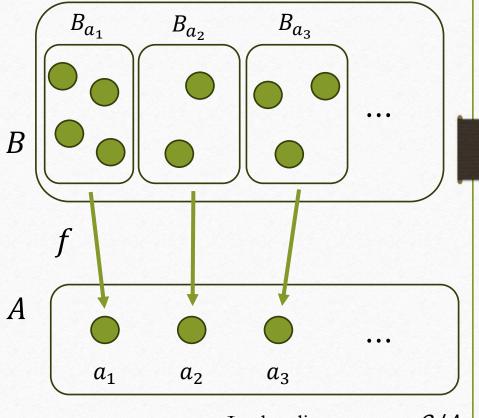
In a slice category C/A, an object $f: B \rightarrow A$ is thought of as a collection of sets indexed by A:

 $(B_a \mid a \in A)$

"
$$B_a = f^{-1}(a)$$
 " for " $a \in A$ "



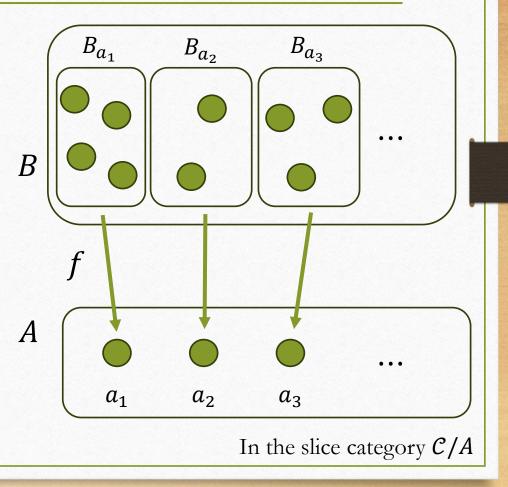
If $f : B \to A$ is denoted $(B_a | a \in A)$, how should we interpret the following notation?



If $f : B \to A$ is denoted $(B_a | a \in A)$, how should we interpret the following notation?

$$\sum_{a \in A} B_a = B$$

There is a functor $\Sigma_A : \mathcal{C}/A \to \mathcal{C}$ given by $(f : B \to A) \mapsto B$ Or: $(B_a \mid a \in A) \mapsto \Sigma_{a \in A} B_a$.

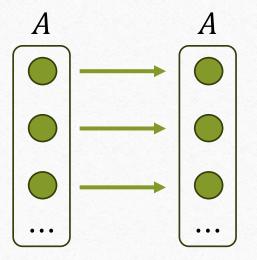


How should we interpret the following notations? What is the corresponding $f: B \rightarrow A$?

- $(1 | a \in A)$
- $(X \mid a \in A)$
- $(C_a \times D_a \mid a \in A)$

How should we interpret the following notations? What is the corresponding $f: B \rightarrow A$?

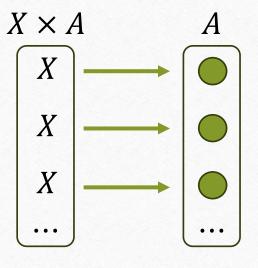
- $(1 \mid a \in A)$ $Id : A \to A$
- $(X \mid a \in A)$
- $(C_a \times D_a \mid a \in A)$



How should we interpret the following notations? What is the corresponding $f: B \rightarrow A$?

• $(1 \mid a \in A)$ • $Id : A \rightarrow A$

•
$$\pi_2: X \times A \to A$$



• $(C_a \times D_a \mid a \in A)$

• $(X \mid a \in A)$

How should we interpret the following notations? What is the corresponding $f: B \rightarrow A$?

- $(1 \mid a \in A)$ $Id : A \to A$
- $(X \mid a \in A)$ $\pi_2 : X \times A \to A$
- $(C_a \times D_a \mid a \in A)$ $C \times_A D \to A$

Slices of categories with finite limits

If C has finite limits, then so does C/A.

There is a functor $\Delta_A : \mathcal{C} \to \mathcal{C}/A$ given by $X \mapsto (\pi_2 : X \times A \to A)$. Or: $X \mapsto (X \mid a \in A)$.

If $g: C \to A$ and $f: B \to A$ are represented by $(C_a \mid a \in A)$ and $(B_a \mid a \in A)$, respectively, how should we interpret the following notation?

 $\left((C_a)^{B_a} \mid a \in A\right)$

In the slice \mathcal{C}/A of a category \mathcal{C} with finite limits

If $g: C \to A$ and $f: B \to A$ are represented by $(C_a \mid a \in A)$ and $(B_a \mid a \in A)$, respectively, how should we interpret the following notation?

$$\left((C_a)^{B_a} \mid a \in A\right)$$

The exponential of g and f in C/A (if it exists!)

Recall: f is **exponentiable** (in \mathcal{C}/A) if the exponential g^f exists for any g. In this case, we have a functor $(-)^f : \mathcal{C}/A \to \mathcal{C}/A$.

In the slice \mathcal{C}/A of a category \mathcal{C} with finite limits

Polynomial functors, finally!

Let $f : B \to A$ be an arrow in a category \mathcal{C} with finite limits. Assume f is exponentiable in \mathcal{C}/A .

Write f in the internal language of C/A as $(B_a | a \in A)$. The polynomial functor P_f associated to f is:

$$\mathcal{C} \xrightarrow{\Delta_A} \mathcal{C}/A \xrightarrow{(-)^f} \mathcal{C}/A \xrightarrow{\Sigma_A} \mathcal{C}$$
$$X \longmapsto (X \mid a \in A) \longmapsto (X^{B_a} \mid a \in A) \longmapsto \sum X^{B_a}$$

 $a \in A$

The list polynomial?

A functor $P : \mathcal{C} \to \mathcal{C}$ is **polynomial** if $P \cong P_f$ for some $f : B \to A$ (which must be exponentiable in \mathcal{C}/A).

So... is $L: X \to L(X)$ polynomial?

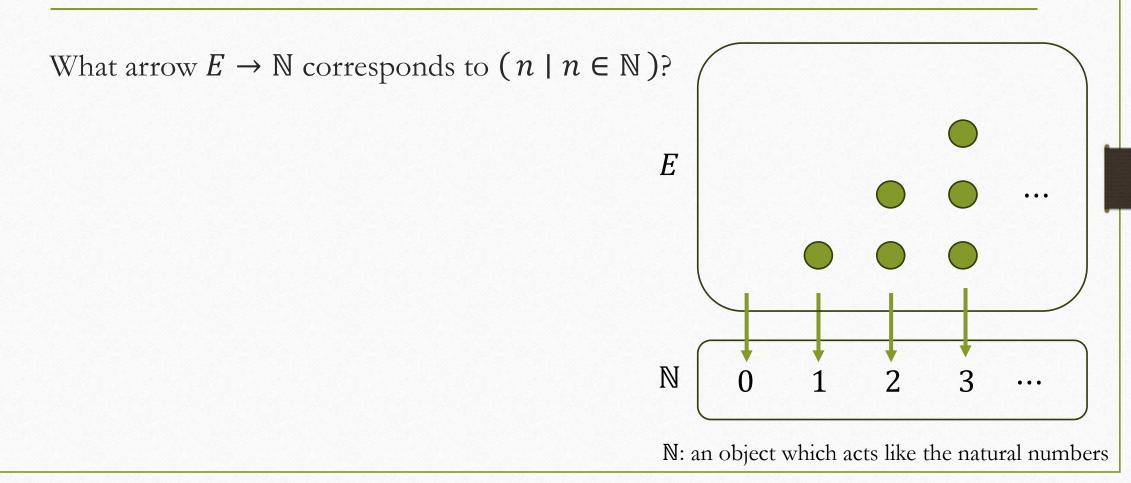
 P_f : the polynomial functor associated to fL(X): list object on an object X

We claim $L(X) = \sum_{n \in \mathbb{N}} X^n$. That means $L : X \mapsto L(X)$ is isomorphic to the

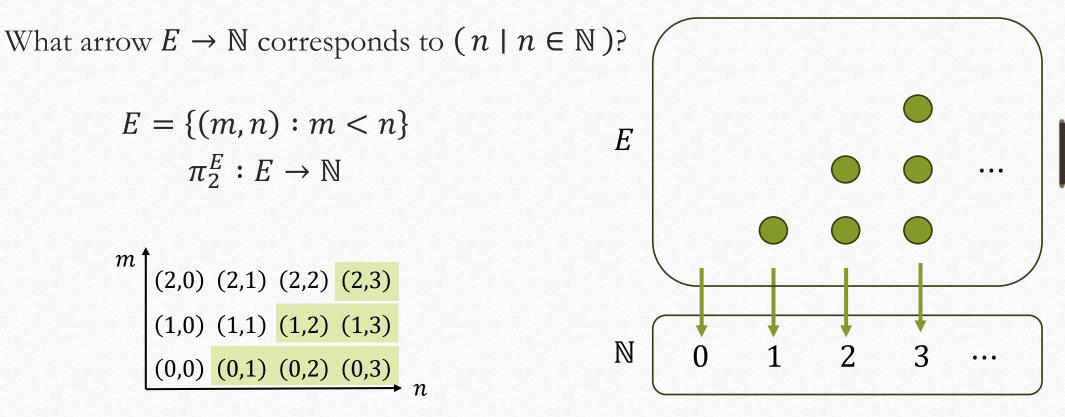
polynomial functor associated to the arrow $(n \mid n \in \mathbb{N})$ in \mathcal{C}/\mathbb{N} .

- What is \mathbb{N} ?
- What arrow $E \rightarrow \mathbb{N}$ corresponds to $(n \mid n \in \mathbb{N})$?

L(X): list object on an object X The polynomial functor associated to $(B_a | a \in A)$ is $X \mapsto \sum_a X^{B_a}$



The list polynomial?



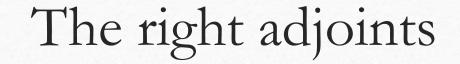
N: an object which acts like the natural numbers

We claim that $\pi_2^E : E \to \mathbb{N}$ is exponentiable, and that the functor $L : X \mapsto L(X)$ is isomorphic to:

$$\mathcal{C} \xrightarrow{\Delta_{\mathbb{N}}} \mathcal{C}/\mathbb{N} \xrightarrow{(-)^{\pi_{2}^{E}}} \mathcal{C}/\mathbb{N} \xrightarrow{\Sigma_{\mathbb{N}}} \mathcal{C}$$
$$X \longmapsto (X \mid n \in \mathbb{N}) \longmapsto (X^{n} \mid n \in \mathbb{N}) \longmapsto \sum_{n \in \mathbb{N}} X^{n}$$

How do we prove this?

L(X): list object on an object XN: an object which acts like the natural numbers $\pi_2^E: E \to \mathbb{N}$ is an arrow which intuitively satisfies $(\pi_2^E)^{-1}(n) = \{1, 2, ..., n\}$



Consider the decomposition $L = \Sigma_{\mathbb{N}} \circ L_{\mathbb{N}}$:

 $length(\emptyset) = 0,$ $length(x :: \ell) = length(\ell) + 1$

$$C \xrightarrow{L_{\mathbb{N}} : X \mapsto (length : L(X) \to \mathbb{N})} C/\mathbb{N} \xrightarrow{\Sigma_{\mathbb{N}}} C$$

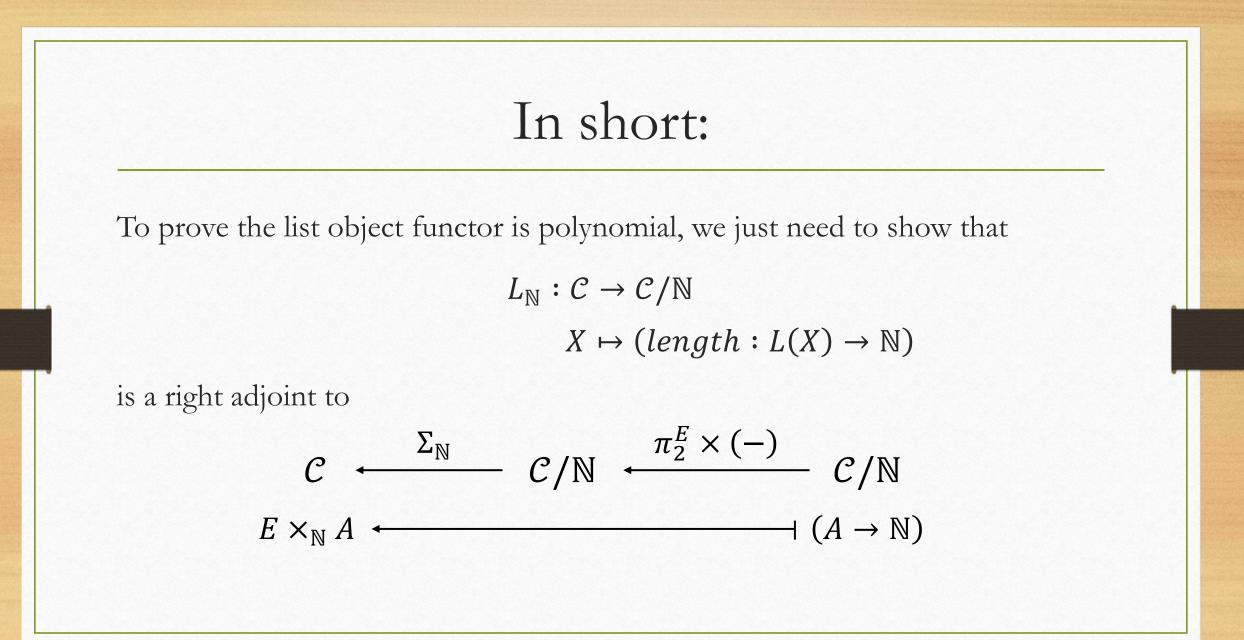
$$C \xrightarrow{\Delta_{\mathbb{N}}} C/\mathbb{N} \xrightarrow{(-)^{\pi_{2}^{E}}} C/\mathbb{N} \xrightarrow{\Sigma_{\mathbb{N}}} C$$

$$C \xrightarrow{\Sigma_{\mathbb{N}}} C/\mathbb{N} \xrightarrow{(-)^{\pi_{2}^{E}}} C/\mathbb{N} \xrightarrow{\Sigma_{\mathbb{N}}} C$$

$$L(X): \text{ list object on an object } X$$

$$\mathbb{N}: \text{ an object which acts like the natural numbers}$$

$$\Sigma_{\mathbb{N}} : (A \to \mathbb{N}) \mapsto A, \quad \Delta_{\mathbb{N}} : X \mapsto (\pi_{2} : X \times \mathbb{N} \to \mathbb{N})$$



Basic strategy

We construct a natural transformation $(\varepsilon_X : E \times_N L(X) \to X)_X$ (which will be the co-unit) and show it satisfies the appropriate universal property:

For every
$$l_A : A \to \mathbb{N}$$
 and every $g : E \times_{\mathbb{N}} A \to X$,
there exists a unique $h : A \to L(X)$ such that
 $length \circ h = l_A$ and $\varepsilon_X \circ (Id \times_{\mathbb{N}} h) = g$.

Requirements

We need to make the following assumptions about the category \mathcal{C} :

• \mathcal{C} has all finite limits and list objects

Requirements

We need to make the following assumptions about the category \mathcal{C} :

- \mathcal{C} has all finite limits and list objects
- \mathcal{C} is extensive, though we can weaken this assumption to the following:

In an **extensive** category with finite limits and list objects, the list object functor is polynomial

In an **extensive** category with finite limits and list objects, the list object functor is polynomial

Thanks for listening!